382 | 13 | 5 |
下载次数 | 被引频次 | 阅读次数 |
This paper puts forward Markowitz's Mean-Variance Model under the VaR(Value at Risk) constraint. After analyzing Markowitz's Mean-Variance Model under the VaR constraint fit for China's securities market, it presents the dynamic adjustment method of investor's optimal securities investment portfolio. In the end, it gives out a practical analytical example in China's securities market and research conclusions.
[1]MacBelniak,PracticalChallengesofPortfolioOptimization,AFairIsaacWhitePaper,May2003.
[2]SimoneManganelliandRobertF .Engle,ValueatRiskModelsinFinance,WorkingPaperNo.75,EuropeanCentralBank,August2001.
[3]CoronadoandMaria,ComparingDifferentMethodsforEstimatingValue atRisk(VaR )forActualNon linearPortfolios:EmpiricalEvidence,WorkingPaper,2000.
[4]Crouchy,M .,D .GalaiandR .Mark,RiskManagement,McGrawHill,NewYork,2000.
[5]Marshall,C .andM .Siegel,ValueatRisk:ImplementingaRiskMeasurementStandard,JournalofDerivatives,Vol.4(Spring),1997.
[6]Markowitz,H .M .,PortfolioSelection,JournalofFinance,Vol.7,March,1952.
基本信息:
DOI:10.19343/j.cnki.11-1302/c.2004.07.007
中图分类号:F224
引用信息:
[1]黄继平,黄良文,陈蔚.基于风险控制的证券投资决策[J].统计研究,2004(07):44-48.DOI:10.19343/j.cnki.11-1302/c.2004.07.007.
基金信息: