nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 12, v.40 145-156
工业机器人使用、性别异质性与高等教育入学率
基金项目(Foundation): 国家社会科学基金一般项目“新发展格局下数字经济高质量发展的收入分配效应研究”(22BJL095); 国家自然科学基金青年项目“破解中国财政支出的贸易收支效应悖论:考虑居民消费习惯因素的理论解释、实证识别与政策设计”(71903057); 中央高校基本科研业务费项目“疫情防控常态化下数字经济赋能广东实体经济高质量发展研究”(QNZD202210)
邮箱(Email): 1986@163.com;
DOI: 10.19343/j.cnki.11-1302/c.2023.12.012
摘要:

“机器换人”已成为学界和社会广泛关注的时代命题,但现有研究对机器人在替代过程中促使劳动力知识结构升级的作用研究不足。本文采用67个国家(地区)1993—2019年的面板数据,实证考察工业机器人使用对高等教育入学率的影响及其性别异质性。研究发现:第一,工业机器人使用显著提升高等教育入学率,并运用倾向得分匹配法、工具变量法等因果识别策略验证结果的稳健性;第二,工业机器人使用对于女性(相比男性)参与高等教育具有更强的激励作用,此性别异质性在发展中经济体尤为显著;第三,人力资本密集型产业发展具有重要的调节作用。伴随着高技术制造业出口比重和高端服务业增加值占比的提高,工业机器人使用对高等教育入学率的正向影响进一步增强。本研究扩展了人工智能社会效益的文献,也为探讨“机器育人”现象提供经验启示。

Abstract:

“Machine Replacing Humans” has become an important academic and social topic, but existing research generally ignores the fact that robots will induce the labor to upgrade their knowledge structure. This paper uses the panel data from 67 countries(regions) during 1993 to 2019 to empirically examine the impact of industrial robots on tertiary enrollment rate and its gender heterogeneity. Firstly, it is found that industrial robots significantly increase the tertiary enrollment rate. This result is still robust after adopting causal identification strategies such as propensity score matching and instrumental variables.Secondly, industrial robots has a stronger incentive for women to participate in higher education compared to men, and this gender heterogeneity is particularly significant in developing economies. Thirdly, the development of human capital-intensive industries has a moderating effect. With the increase of high-tech manufacturing exports and the added value of high-end service industry, the impact of the industrial robots on tertiary enrollment rate will be enhanced. This paper expands the literature on the social benefits of artificial intelligence, and provides empirical inspiration for exploring the phenomenon of “Machine Educating Humans”.

参考文献

[1]葛阳琴,谢建国.需求变化与中国劳动力就业波动——基于全球多区域投入产出模型的实证分析[J].经济学(季刊), 2019, 18(4):1419–1442.

[2]何大安.互联网应用扩张与微观经济学基础——基于未来“数据与数据对话”的理论解说[J].经济研究, 2018, 53(8):177–192.

[3]吕越,谷玮,包群.人工智能与中国企业参与全球价值链分工[J].中国工业经济, 2020(5):80–98.

[4]王文,牛泽东,孙早.工业机器人冲击下的服务业:结构升级还是低端锁定[J].统计研究, 2020, 37(7):54–65.

[5]王永钦,董雯.机器人的兴起如何影响中国劳动力市场?——来自制造业上市公司的证据[J].经济研究, 2020, 55(10):159–175.

[6]余玲铮,魏下海,万江滔.信息技术、性别红利与要素收入分配[J].学术月刊, 2021, 53(3):63–72.

[7]袁富华,张平,刘霞辉,等.增长跨越:经济结构服务化、知识过程和效率模式重塑[J].经济研究, 2016, 51(10):12–26.

[8] Acemoglu D, Restrepo P. The Race between Man and Machine:Implications of Technology for Growth, Factor Shares, and Employment[J].American Economic Review, 2018, 108(6):1488–1542.

[9] Acemoglu D, Restrepo P. Robots and Jobs:Evidence from US Labor Markets[J]. Journal of Political Economy, 2020, 128(6):2188–2244.

[10] Acemoglu D, Restrepo P. Demographics and Automation[J]. The Review of Economic Studies, 2022, 89(1):1–44.

[11] Autor D H. Why Are There Still So Many Jobs? The History and Future of Workplace Automation[J]. The Journal of Economic Perspectives,2015, 29(3):3–30.

[12] Autor D H, Dorn D. The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market[J]. American Economic Review, 2013,103(5):1553–1597.

[13] Autor D, Salomons A. Is Automation Labor-Displacing? Productivity Growth, Employment, and the Labor Share[R]. NEBR Working Paper,2018.

[14] Bacolod M P, Blum B S. Two Sides of the Same Coin Us “Residual” Inequality and the Gender Gap[J]. Journal of Human Resources, 2010,45(1):197–242.

[15] Battisti M, Gravina A F. Do Robots Complement or Substitute for Older Workers?[J]. Economics Letters, 2021, 208:110064.

[16] Blanas S, Gancia G, Lee S Y. Who is Afraid of Machines?[J]. Economic Policy, 2019, 34(100):627–690.

[17] Brussevich M, Dabla-Norris M E, Khalid S. Is Technology Widening the Gender Gap? Automation and the Future of Female Employment[R].IMF Working paper, 2019.

[18] Cortes G M, Oliveira A, Salomons A. Do Technological Advances Reduce the Gender Wage Gap?[J]. Oxford Review of Economic Policy, 2020,36(4):903–924.

[19] Dauth W, Findeisen S, Suedekum J, et al. The Adjustment of Labor Markets to Robots[J]. Journal of the European Economic Association, 2021,19(6):3104–3153.

[20] Dixon J, Hong B, Wu L. The Robot Revolution:Managerial and Employment Consequences for Firms[J]. Management Science, 2021, 67(9):5586–5605.

[21] Ge S, Zhou Y. Robots, Computers, and the Gender Wage Gap[J]. Journal of Economic Behavior&Organization, 2020, 178:194–222.

[22] Goos M, Manning A, Salomons A. Explaining Job Polarization:Routine-biased Technological Change and Offshoring[J]. American Economic Review, 2014, 104(8):2509–2526.

[23] Graetz G, Michaels G. Robots at Work[J]. Review of Economics and Statistics, 2018, 100(5):753–768.

[24] Guerguil M, Mandon P, Tapsoba R. Flexible Fiscal Rules and Countercyclical Fiscal Policy[J]. Journal of Macroeconomics, 2017, 52:189–220.

[25] Hannum E, An X, Cherng H Y S. Examinations and Educational Opportunity in China:Mobility and Bottlenecks for the Rural Poor[J]. Oxford Review of Education, 2011, 37(2):267–305.

[26] Hofstede G. Culture’s Consequence:International Differences in Work-Related Values[M]. Beverly Hills:Sage Publications, 1980.

[27] Krenz A, Prettner K, Strulik H. Robots, Reshoring, and the Lot of Low-Skilled Workers[J]. European Economic Review, 2021, 136:103744.

[28] Lee S Y T, Shin Y. Horizontal and Vertical Polarization:Task-Specific Technological Change in a Multi-Sector Economy[R]. NBER Working Paper, 2017, No. 23283.

[29] St?hler N. The Impact of Aging and Automation on the Macroeconomy and Inequality[J]. Journal of Macroeconomics, 2021, 67:103278.

(1)详细数据见:https://ifr.org/worldrobotics/。

(2)详细报告见:https://technologymagazine.com/ai-and-machine-learning/375mn-jobs-be-displaced-automation–2030-mckinsey。

(3)详细报告见:https://www.weforum.org/reports/the-future-of-jobs-report–2020/digest。

(4)详细数据见:https://data.worldbank.org/indicator。

(1)教育层次分为初等教育、中等教育和高等教育,依次对应ISCED中0到8共9个级别。其中,高等教育包含4个级别,分别为职业技能教育(级别5)、本科生教育(级别6)、硕士生教育(级别7)和博士生教育(级别8)。

(2)联合国教科文组织统计了各国中学的官方入学年龄和受教育年限,由此得出官方的中学毕业年龄。

(1)工业机器人指可自动控制、可对三轴及三轴以上进行重复编程、可固定或可移动、可在工业自动化中使用的多用途操作机。

(2)由于本文能够获取的IFR数据更新至2019年,因而选取1993—2019年IFR和WDI数据库共同涵盖的67个国家(地区)为样本。因篇幅所限,具体国家样本以附表1展示,见《统计研究》网站所列附件。下同。

(3)因篇幅所限,核心变量的统计性描述以附表2展示。

(1)详细数据见:http://unctadstat.unctad.org/EN/。

(2)Hofstede(1980)构建的文化价值量表不随时间而变化,因而满足工具变量外生性的要求,详细数据见:https://geerthofstede.com/。

(3)因篇幅所限,稳健性检验结果以附表3~5展示。

(4)根据IFR行业分类,15个制造业行业分别为食品和饮料业,纺织业,木材和家具业,造纸业,药品和化妆品业,其他化学制品业,橡胶和塑料业,玻璃、陶瓷、石材和矿产品业,基本金属业,金属制品业,汽车业,其他交通业,其他制造业,电子原件和设备业,半导体业。

(5)进口工业机器人对应HS6位码847950。

(6)详细数据见:http://comtradeplus.un.org/Trade Flow。

(1)根据世界银行的标准,平均每位妇女生育4胎以上的国家处于前人口红利阶段,平均每位妇女生育2.1至4胎且适龄劳动人口(15岁至64 岁)占总人口比重呈上升趋势的国家处于早期人口红利阶段,平均每位妇女生育2.1至4胎但适龄劳动人口占总人口比重呈下降趋势的国家处于晚期人口红利阶段,平均每位妇女生育2.1胎以下的国家则处于后人口红利阶段。

(2)因篇幅所限,匹配后的处理组和控制组国家样本以附表6展示。

(1)因篇幅所限,基于性别异质性的稳健性检验结果以附表7展示。

(1)高端服务业主要包含金融服务业、商务服务业(如通讯和信息服务业、科学和技术服务业等)、房地产服务业和政府服务业(如卫生和社会保障业、教育业、社会工作等),详细数据见:https://www.rug.nl/ggdc/。

基本信息:

DOI:10.19343/j.cnki.11-1302/c.2023.12.012

中图分类号:F426.67;G649.1

引用信息:

[1]林峰,李宏兵.工业机器人使用、性别异质性与高等教育入学率[J].统计研究,2023,40(12):145-156.DOI:10.19343/j.cnki.11-1302/c.2023.12.012.

基金信息:

国家社会科学基金一般项目“新发展格局下数字经济高质量发展的收入分配效应研究”(22BJL095); 国家自然科学基金青年项目“破解中国财政支出的贸易收支效应悖论:考虑居民消费习惯因素的理论解释、实证识别与政策设计”(71903057); 中央高校基本科研业务费项目“疫情防控常态化下数字经济赋能广东实体经济高质量发展研究”(QNZD202210)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文